Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
Mol Microbiol ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038143

RESUMO

In immunocompetent individuals, Fusarium spp. stands out as the causative agent of onychomycosis, among the non-dermatophyte molds. Despite evidence indicating that Fusarium oxysporum organizes itself in the form of a biofilm causing onychomycosis, there is little literature on the etiopathogenesis of the biofilm on the nail, specifically the signaling molecules present, known as quorum sensing (QS). Thus, this study detected the presence of a molecule related to QS from the ex vivo biofilm of F. oxysporum on human nail and investigated its effect on preformed biofilm in vitro. The detection and physicochemical characterization of a QS molecule, from the extracellular matrix (ECM), was carried out by Fourier transform infrared (FTIR) spectroscopy with an attenuated total reflectance (ATR) accessory and by headspace gas chromatography coupled to mass spectrometry (GC-MS) analyses. Determination of viable cells, cell activity, total biomass, ECM components and scanning electron microscopy (SEM) were performed to evaluate the influence of the QS molecule on the in vitro biofilm of F. oxysporum. The beginning, in the ex vivo biofilm of F. oxysporum on human nails, the volatile organic compound 2-ethyl-1-hexanol (2EH) was detected as a component of QS. Thereafter in vitro analyses, synthetic 2EH was able to modulate the biofilm by stimulating its filament, increasing total biomass and ECM production in terms of total carbohydrates, but with a reduction in total proteins and nucleic acids. We thus evidence, for the first time, the presence of 2EH in the biofilm of F. oxysporum, developed on the human nail, and the in vitro action of this compound as a QS molecule.

2.
Microb Pathog ; 185: 106437, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913825

RESUMO

BACKGROUND: Our previous proteomics data obtained from Candida albicans recovered after serial passage in a murine model of systemic infection revealed that Orf19.36.1 expression correlates with the virulence of the fungus. Therefore, the impact of ORF19.36.1 upon virulence was tested in this study. MATERIALS & METHODS: CRISPR-Cas9 technology was used to construct homozygous C. albicans orf19.36.1 null mutants and the phenotypes of these mutants examined in vitro (filamentation, invasion, adhesion, biofilm formation, hydrolase activities) and in vivo assays. RESULTS: The deletion of ORF19.36.1 did not significantly impact the phenotypes examined or the virulence of C. albicans in two infection models. CONCLUSION: These results suggest that, although Orf19.36.1 expression correlates with virulence, this protein is not essential for C. albicans pathobiology.


Assuntos
Candida albicans , Candidíase , Animais , Camundongos , Candidíase/microbiologia , Virulência/genética , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
3.
Photodiagnosis Photodyn Ther ; 44: 103875, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37923285

RESUMO

INTRODUCTION: The Trichophyton rubrum complex comprises the majority of dermatophyte fungi (DM) responsible for chronic cases of onychomycosis, which is treated with oral or topical antifungals. However, owing to antifungal resistance, alternative therapies, such as photodynamic therapy (PDT), are needed. This study investigated the frequency of the T. rubrum species complex in onychomycosis cases in the northwestern region of Paraná state, Brazil, and evaluated the efficacy of (PDT) using P123-encapsulated hypericin (Hyp-P123) on clinical isolates of T. rubrum in the planktonic cell and biofilm forms. MATERIAL AND METHODS: The frequency of the T. rubrum complex in onychomycosis cases from 2017 to 2021 was evaluated through a data survey of records from the Laboratory of Medical Mycology (LEPAC) of the State University of Maringa (UEM). To determine the effect of PDT-Hyp-P123 on planktonic cells of T. rubrum isolates, 1 × 105 conidia/mL were treated with ten different concentrations of Hyp-P123 and then irradiated with 37.8 J/cm2. Antibiofilm activity of PDT-Hyp-P123 was tested against T. rubrum biofilm in the adhesion phase (3 h), evaluated 72 h after irradiation (37.8 J/cm2), and the mature biofilm (72 h), evaluated immediately after irradiation. In this context, three different parameters were evaluated: cell viability, metabolic activity and total biomass. RESULTS: The T. rubrum species complex was the most frequently isolated DM in onychomycosis cases (approximately 80 %). A significant reduction in fungal growth was observed for 75 % of the clinical isolates tested with a concentration from 0.19 µmol/L Hyp-P123, and 56.25 % had complete inhibition of fungal growth (fungicidal action); while all isolates were azole-resistant. The biofilm of T. rubrum isolates (TR0022 and TR0870) was inactivated in both the adhesion phase and the mature biofilm. CONCLUSION: PDT-Hyp-P123 had antifungal and antibiofilm activity on T. rubrum, which is an important dermatophyte responsible for onychomycosis cases.


Assuntos
Onicomicose , Fotoquimioterapia , Humanos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Onicomicose/tratamento farmacológico , Onicomicose/microbiologia , Fotoquimioterapia/métodos , Azóis/farmacologia , Azóis/uso terapêutico , Trichophyton , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Biofilmes
4.
J Fungi (Basel) ; 9(7)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37504685

RESUMO

Infections caused by biofilm-forming agents have important implications for world health. Mixed infections, caused by more than one etiological agent, are also an emerging problem, especially regarding the standardization of effective diagnosis and treatment methods. Cases of mixed onychomycosis (OM) have been reported; however, studies on the microbial interactions between the different fungi in biofilms formed on nails are still scarce. We describe a case of mixed OM caused by the dermatophyte Trichophyton rubrum and the black yeast-like fungus Rhinocladiella similis. Identical growths of both fungi were observed in more than 50 cultures from different nail samples. Additionally, both species were able to form organized single and mixed biofilms, reinforcing the participation of both fungi in the etiology of this OM case. R. similis seemed to grow faster during the process, suggesting that T. rubrum benefits from biofilm development when in combination. Moreover, the biofilm of the Rhinocladiella isolate exhibited exacerbated production of the extracellular matrix, which was not observed with that of a Rhinocladiella reference strain, suggesting that the isolate had natural abilities that were possibly perfected during development in the nail of the patient.

5.
J Fungi (Basel) ; 9(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233292

RESUMO

Onychomycosis is a chronic fungal nail infection caused by several filamentous and yeast-like fungi, such as the genus Candida spp., of great clinical importance. Black yeasts, such as Exophiala dermatitidis, a closely related Candida spp. species, also act as opportunistic pathogens. Fungi infectious diseases are affected by organisms organized in biofilm in onychomycosis, making treatment even more difficult. This study aimed to evaluate the in vitro susceptibility profile to propolis extract and the ability to form a simple and mixed biofilm of two yeasts isolated from the same onychomycosis infection. The yeasts isolated from a patient with onychomycosis were identified as Candida parapsilosis sensu stricto and Exophiala dermatitidis. Both yeasts were able to form simple and mixed (in combination) biofilms. Notably, C. parapsilosis prevailed when presented in combination. The susceptibility profile of propolis extract showed action against E. dermatitidis and C. parapsilosis in planktonic form, but when the yeasts were in mixed biofilm, we only observed action against E. dermatitidis, until total eradication.

6.
Crit Rev Microbiol ; 49(1): 38-56, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35171731

RESUMO

Considering the multifaceted and increasing application of photodynamic therapy (PDT), in recent years the antimicrobial employment of this therapy has been highlighted, because of the antiviral, antibacterial, antiparasitic, and antifungal activities that have already been demonstrated. In this context, research focussed on antimycological action, especially for treatment of superficial infections, presents promising growth due to the characteristics of these infections that facilitate PDT application as new therapeutic options are needed in the field of medical mycology. Among the more than one hundred classes of photosensitizers the antifungal action of hypericin (Hyp) stands out due to its ability to permeate the lipid membrane and accumulate in different cytoplasmic organelles of eukaryotic cells. In this review, we aim to provide a complete overview of the origin, physicochemical characteristics, and optimal alternative drug deliveries that promote the photodynamic action of Hyp (Hyp-PDT) against fungi. Furthermore, considering the lack of a methodological consensus, we intend to compile the best strategies to guide researchers in the antifungal application of Hyp-PDT. Overall, this review provides a future perspective of new studies and clinical possibilities for the advances of such a technique in the treatment of mycoses in humans.


Assuntos
Anti-Infecciosos , Produtos Biológicos , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Anti-Infecciosos/uso terapêutico
7.
J Mycol Med ; 33(2): 101356, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36563454

RESUMO

Infections by Trichosporon spp. are increasing worldwide and its treatment remains a challenge. Colonization of medical devices has been considered as a predisposing factor for trichosporonosis, which is related to fungal biofilm production. Thus, this study aimed to evaluate the ability of six hospital T. asahii isolates to form biofilm on abiotic surface, as well as to investigate the impact of three classic antifungals on both planktonic and biofilm forms. The fungal identification was based on macro and micromorphological characteristics, biochemical tests and confirmation by mass spectrometry assisted by the flight time desorption/ionization matrix (MALDI-TOF MS). Antifungal susceptibility assay of planktonic cells showed inhibitory and fungicidal concentrations ranging from 2.5 to 10 µg/mL for voriconazole, 2 to 8 µg/mL for fluconazole, and 1 to 4 µg/mL for amphotericin B. All T. asahii strains were able to form biofilms on the polystyrene microplates surface within 24 h, showing a simple architecture when compared with Candida spp. biofilm. On the other hand, the same antifungals did not show action in neither the inhibition of biofilm formation nor on the formed biofilm. Concluding, the present study reinforced the relevance of the MALDI-TOF MS methodology for a safe identification of T. asahii. Classic antifungals were active on the planktonic form, but not on the biofilms. All isolates formed biofilms on the polystyrene microplates and showed a simple architecture.


Assuntos
Antifúngicos , Trichosporon , Antifúngicos/farmacologia , Poliestirenos , Hospitais , Biofilmes , Plâncton , Testes de Sensibilidade Microbiana
8.
J Fungi (Basel) ; 8(11)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36422037

RESUMO

This article describes Neocosmospora keratoplastica as an etiological onychomycosis agent. Ex vivo studies were initially performed to demonstrate the ability of this species to grow and form a well-organized characteristic biofilm on sterilized healthy nails. Based on the history of excellent results, both for antifungal and antibiofilm, of propolis resin gum, we evaluated its activity using artificially formed biofilm. In vitro, the minimal biofilm eradication concentration of the propolis extract (PE) was 375 µg of total polyphenol content (TPC) per mL, while for the propolis gel (PG) it was 450 µg of TPC per mL. In biofilm exposed to the propolis products, a decrease in hyphae and conidia was evident, accompanied by a disorganization of the extracellular matrix. Additionally, this low concentration of PE was able to significantly reduce the number of colony-forming units and the metabolic activity. Furthermore, the treatment of a 15-year nail infection due to N. keratoplastica was carried out exclusively using a topical treatment with a gel containing propolis (30%) with a daily dosage. This treatment achieved complete remission of the onychomycosis in 12 months. It is important to point out that some inconveniences previously reported by other patients treated with propolis extract were eliminated, increasing adherence to treatment.

9.
Microb Pathog ; 173(Pt A): 105868, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36347383

RESUMO

Fusarium keratoplasticum is a common specie in human infections and is responsible for many diseases affecting immunocompetent and immunocompromised patients. This study aimed to evaluate the ability of Fusarium keratoplasticum to form biofilm in venous catheters (VC), focusing on the development of maturation and dispersion over time (24, 48, 72, 96 and 120 h) and the evaluation amphotericin B (AB) susceptibility in planktonic cells and after 96 h of biofilm formation. F. keratoplasticum was able to form a biofilm in VC with maturation most likely between 48 and 72 h, according to colony count and total biomass results. The dispersion process supposedly occurred from 72 to 96 h, when we observed a decrease in the parameter's colony count, total biomass and mitochondrial metabolic activity. The planktonic cells of F. keratoplasticum were susceptible to AB, however, there was no inhibition of the F. keratoplasticum strain biofilm in any of the AB concentrations, with the growth of the fungus recovering after 48 h in contact with AB. Thus, our findings suggest that in addition to forming a biofilm on VC, F. keratoplasticum becomes AB-resistant, highlighting the concern of this fungus on medical devices.


Assuntos
Fusarium , Humanos , Biofilmes , Anfotericina B/farmacologia , Fungos , Cateteres , Antifúngicos/farmacologia , Testes de Sensibilidade Microbiana
10.
Arq. ciências saúde UNIPAR ; 26(3): 1360-1375, set-dez. 2022.
Artigo em Português | LILACS | ID: biblio-1402290

RESUMO

A ocorrência das infecções do trato urinário (ITU) causadas por leveduras do gênero Candida estão aumentando consideravelmente nas últimas décadas, sendo a Candida albicans a mais comumente diagnosticada como causadora deste tipo de infecções. Contudo, outras espécies, como exemplo da Candida tropicalis, estão emergindo como preocupantes causadores da doença. Neste sentido, o objetivo do presente trabalho é revisar os aspectos relacionados com as ITU causadas por leveduras do gênero Candida. Foi realizada uma pesquisa na base de dados PubMed, buscando artigos sobre a epidemiologia, patogenia e tratamento das ITU causadas por leveduras do gênero Candida. As espécies de Candida são os fungos patogênicos oportunistas mais relevantes causadores de infecções nosocomiais e podem causar infecção no trato urinário, tanto inferior (ureteres, bexiga e uretra) quanto superior (rins), principalmente em pacientes imunocomprometidos. Existem alguns fatores predisponentes, como gênero feminino, idade avançada, diabetes mellitus, hospitalização prolongada, imunossupressão, gravidez, hipertensão, neutropenia, cálculos renais, infecções nosocomiais, terapia antibiótica e procedimentos, como a cateterização, que atuam como facilitadores das ITU por Candida spp. A doença pode ocorrer de forma assintomática, porém, pode evoluir para casos mais graves com comprometimento sistêmico em situações de candidemia que pode causar a morte do paciente, principalmente se tratando de indivíduos imunocomprometidos. Sendo assim, devido ao risco existente, a doença não pode ser negligenciada e um diagnóstico preciso e um tratamento adequado devem ser estabelecidos.


The occurrence of urinary tract infections (UTI) caused by yeasts of the genus Candida has increased considerably in recent decades, with Candida albicans being the most commonly diagnosed as causing this type of infections. However, other species, such as Candida tropicalis, are emerging as worrisome causes of the disease. In this sense, the objective of the present paper is to review the aspects related to the UTI caused by yeasts of the genus Candida. A search was carried out in the PubMed database, searching for articles on the epidemiology, pathogenesis and treatment of UTI caused by yeasts of the genus Candida. Candida species are the most relevant opportunistic pathogenic fungi that cause nosocomial infections and can cause both lower (ureters, bladder and urethra) and upper (kidneys) urinary tract infections, especially in immunocompromised patients. There are some predisposing factors, such as female gender, advanced age, diabetes mellitus, prolonged hospitalization, immunosuppression, pregnancy, hypertension, neutropenia, kidney stones, nosocomial infections, antibiotic therapy and procedures, such as catheterization, that act as facilitators of UTI by Candida spp. The disease can occur asymptomatically, however, it can progress to more severe cases with systemic involvement in situations of candidemia that can cause the death of the patient, especially in immunocompromised individuals. Therefore, due to the existing risk, the disease cannot be neglected and an accurate diagnosis and adequate treatment must be established.


La aparición de infecciones del tracto urinario (ITU) causadas por levaduras del género Candida ha aumentado considerablemente en las últimas décadas. Candida albicans es la infección por levaduras más comúnmente diagnosticada. Sin embargo, otras especies, como la Candida tropicalis, están surgiendo como causa preocupante de la enfermedad. En este sentido, el objetivo del presente trabajo es revisar los aspectos relacionados con la ITU causada por levaduras del género Candida. Se realizó una búsqueda en la base de datos PubMed, buscando artículos sobre la epidemiología, la patogénesis y el tratamiento de la ITU causada por levaduras del género Candida. Las especies de Candida son los hongos patógenos oportunistas más relevantes que causan infecciones nosocomiales y pueden provocar infecciones del tracto urinario inferior (uréteres, vejiga y uretra) y superior (riñones), especialmente en pacientes inmunodeprimidos. Existen algunos factores predisponentes, como el sexo femenino, la edad avanzada, la diabetes mellitus, la hospitalización prolongada, la inmunosupresión, el embarazo, la hipertensión, la neutropenia, los cálculos renales, las infecciones nosocomiales, la terapia con antibióticos y los procedimientos como el cateterismo, que actúan como facilitadores de la ITU por Candida spp. La enfermedad puede presentarse de forma asintomática, pero puede evolucionar a casos más graves con afectación sistémica en situaciones de candidemia que pueden causar la muerte del paciente, especialmente en individuos inmunodeprimidos. Por lo tanto, debido al riesgo existente, no se puede descuidar la enfermedad y se debe establecer un diagnóstico preciso y un tratamiento adecuado.


Assuntos
Infecções Urinárias/complicações , Candida albicans/patogenicidade , Candida tropicalis/patogenicidade , Pielonefrite/complicações , Sistema Urinário/lesões , Infecção Hospitalar/complicações , Epidemiologia/estatística & dados numéricos , Hospedeiro Imunocomprometido/fisiologia , Biofilmes , Cistite/complicações , Candidemia/complicações , Hospitalização
11.
Microorganisms ; 10(9)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36144323

RESUMO

Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that allow the evaluation of fungal morphology and the identification of the etiologic agent of mycosis. Most current protocols for the diagnosis of fungal infections are based on culture-dependent methods that enable the examination of the fungi for further identification of the etiological agent of the mycosis. The isolation of fungi from pure cultures is typically recommended, as when more than one species is identified, the second agent is considered a contaminant. Fungi mostly survive in highly organized communities that provoke changes in phenotypic profile, increase resistance to antifungals and environmental stresses, and facilitate evasion from the immune system. Mixed fungal biofilms (MFB) harbor more than one fungal species, wherein exchange can occur that potentialize the effects of these virulence factors. However, little is known about MFB and their role in infectious processes, particularly in terms of how each species may synergistically contribute to the pathogenesis. Here, we review fungi present in MFB that are commensals of the human body, forming the mycobiota, and how their participation in MFB affects the maintenance of homeostasis. In addition, we discuss how MFB are formed on both biotic and abiotic surfaces, thus being a significant reservoir of microorganisms that have already been associated in infectious processes of high morbidity and mortality.

12.
Exp Dermatol ; 31(11): 1810-1814, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818750

RESUMO

Fungal biofilms have been involved in the pathogenesis of onychomycosis, but the aspects contributing to this association need to be enlightened. This study aimed to investigate the ability of three different fungi to form biofilm on the nail. All evaluated fungi were able to grow on the nails, using them as the only nutritional source and formed a structure strongly suggestive of biofilms. However, their architecture and morphology were highly contrasting: Candida albicans showed dense growth, exhibited a well-structured community and a large amount of extracellular matrix (ECM), and FTIR-ATR spectroscopy reinforced these findings revealing components suggestive of the biofilm. For Fusarium oxysporum, these events were also observed, but in lower intensity. Furthermore, while Trichophyton rubrum presented a well-organized architecture, the ECM was not visualized. We hypothesize that these findings are related to the symptomatology of onychomycosis. When it is caused by a non-dermatophyte, it usually is accompanied with paronychia, pain, oedema, inflammation and few signals of keratolysis, while dermatophytes are more associated with intense onycholysis and absence of the inflammatory signals. Biofilm seems to be crucial for non-dermatophytes to cause onychomycosis, but not for T. rubrum.


Assuntos
Onicomicose , Onicomicose/microbiologia , Onicomicose/patologia , Unhas , Biofilmes , Trichophyton
13.
Microb Pathog ; 169: 105640, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35716926

RESUMO

Onychomycosis (OM) is a fungal infection, responsible for about 50% of nail diseases. OM has been attributed to the ability of fungi to naturally organize themselves into biofilms on nail surfaces. However, little is known about the exact role of the biofilm in the etiopathogenesis of OM, as well as its influence in the permeation of a topical treatment. The objectives of this study were to review the literature for topical OM treatments in clinical trials, assess the efficiency of these treatments, and discuss factors that could affect the success of these treatments. First, a systematic search of articles published in the MEDLINE database (PubMed) between January 2010 and December 2019 was conducted, focusing on drugs under clinical trials for the topical treatment of OM. Of the publications selected, it was clear that none of them had considered the fungi organized in biofilm. Therefore, we reflected on some important variables involved in OM, such as the nail structure and the mechanism of fungal invasion. Some methods, such as histopathologic analysis and spectroscopy techniques, were found to be effective in the detection of nail biofilm, and could be used in future drug permeation studies. This review allowed us to conclude that novel antifungals for the topical treatment of OM must consider the drug to permeate through biofilm. Natural products, such as propolis, seem strong candidates in this respect.


Assuntos
Doenças da Unha , Onicomicose , Administração Tópica , Antifúngicos/química , Humanos , Doenças da Unha/tratamento farmacológico , Unhas , Onicomicose/tratamento farmacológico
14.
Antibiotics (Basel) ; 12(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36671272

RESUMO

Species of the Candida genus represent the third most common cause of onychomycosis, the most frequent and difficult to treat nail infection. Onychomycosis has been attributed to fungi organized in biofilm and some natural products have proved promising for its treatment. This study aimed to evaluate the antibiofilm activity of propolis extract (PE) and its by-product (WPE) on 7-day preformed biofilms produced by Candida albicans in polystyrene microplates, as well as in an ex vivo model on human nail fragments. The cytotoxicity and permeation capacity were also assessed. Firstly, multiple parameters were evaluated over 7 days to elucidate the dynamics of biofilm formation by C. albicans. The cell viability and total biomass did not vary much from the beginning; however, days 3 and 4 were crucial in terms of metabolic activity, which was significantly increased, and the levels of extracellular matrix components, wherein proteins and nucleic acids experienced an increase, but polysaccharide levels dropped. Architecturally, one-day biofilm showed a monolayer of organized cells (blastoconidia, hyphae, and pseudohyphae), while in the seven-day biofilm there was a three-dimensional well-structured and complex biofilm. This yeast was also able to form a biofilm on both surfaces of the nail, without an additional nutritional source. Both extracts showed excellent antibiofilm activity against the 7-day preformed biofilm and were not toxic to Vero cells at concentrations compatible with the antifungal and antibiofilm activities. Both extracts permeated the experimentally infected nail, with WPE being more efficient. The results of this study, taken together, reinforce the potential of these natural products, containing propolis, as a safe option for the topical treatment of onychomycosis.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34854801

RESUMO

This study aimed to evaluate the antimycotoxigenic effect of essential oils (EOs) obtained from four different aromatic plants on the production of deoxynivalenol (DON) and zearalenone (ZEA) by Fusarium graminearum. The EOs from ginger (GEO), turmeric (TEO), thyme (ThEO) and rosemary (REO) were obtained by hydrodistillation and identified by gas chromatography/mass spectrometry (GC/MS). The major compounds found were mostly monoterpenes and sesquiterpenes. The minimum inhibitory concentration (MIC) and minimum fungicide concentration (MFC) were 11.25, 364, 366 and 11,580 µg mL-1 for ThEO, GEO, REO and TEO, respectively. The results evidenced that the assessed EOs inhibited DON and partially ZEA production by F. graminearum. ThEO and GEO were the EOs with most potent antimycotoxigenic action for DON and ZEA, respectively. These EOs have shown promising results in vitro regarding inhibition of mycotoxin production and might be used in the future as substitutes for synthetic fungicides.


Assuntos
Antifúngicos/farmacologia , Fusarium/efeitos dos fármacos , Óleos Voláteis/farmacologia , Tricotecenos/metabolismo , Zearalenona/metabolismo , Antifúngicos/química , Curcuma/química , Fusarium/química , Fusarium/metabolismo , Testes de Sensibilidade Microbiana , Óleos Voláteis/química , Rosmarinus/química , Thymus (Planta)/química , Tricotecenos/química , Zearalenona/química
16.
Mycopathologia ; 187(1): 85-93, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34855103

RESUMO

Rhodotorula spp. and Trichosporon spp. are opportunistic pathogens, and although an association between these two species in the same infection appears to be uncommon, it has been reported. This is the first study that aimed to evaluate the pathogenesis of a co-infection by R. mucilaginosa and T. asahii, using a new in vivo model, the Zophobas morio larvae. Suspensions from planktonic and biofilm-recovered cells were injected in the larvae as in monospecies as mixed (a ratio of 1:1 for both agents of a of 105 inoculum). Individual and mixed biofilms of R. mucilaginosa and T. asahii were produced for 24 and 48 h, and they were partially characterized by crystal violet and reduction of tetrazolium salt. When evaluating the impact of the planktonic suspension in vivo we verified that the fungi in monoculture were more able to kill the larvae than those from planktonic mixed suspension. On the other hand, regarding biofilm-recovered cells, there was an increase in the death of larvae infected for mixed suspensions. Moreover, the death rate was more pronounced when the larvae were infected with 48 h biofilm-recovered cells than the 24 h ones. T. asahii was the best producer of total biomass, mainly in 48 h. The metabolic activity for both yeasts organized in biofilm maintained the same pattern between 24 and 48 h. The present study proves a synergistic interaction between R. mucilaginosa and T. asahii after an experience in a mixed biofilm. Our results suggest that both species were benefited from this interaction, acquiring a greater potential for virulence after passing through the biofilm and this ability was acquired by the cells released from the biofilm.


Assuntos
Coinfecção , Rhodotorula , Trichosporon , Antifúngicos , Biofilmes , Humanos
17.
Int J Dermatol ; 61(2): 191-198, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34235733

RESUMO

BACKGROUND: Fusarium spp. has been considered as an onychomycosis agent, but little is known about the etiopathogenesis of fusarial onychomycosis; thus, the objective of this study was to characterize the fungal-nail interaction and the consequences of the nail infection process by Fusarium oxysporum using the human nail, in an ex vivo model. METHODS: The kinetic of biofilm production and infection by F. oxysporum using the nail as the only nutritional source were evaluated by scanning electron microscopy, number of culturable cells, metabolic activity, characterization of extracellular matrix, spectroscopy and histopathology analyses. RESULTS: After evaluating the biofilm kinetic over 7 days using different parameters and techniques, it was possible to characterize the Fusarium-nail interaction. CONCLUSIONS: This study is a part of a big project aiming to clarify the fusarial pathogenesis and contributes to proving F. oxysporum is able to adapt, grow, develop, and form a biofilm on healthy human nails, which are crucial steps for the invasion process.


Assuntos
Fusarium , Onicomicose , Biofilmes , Humanos , Unhas
18.
Front Cell Infect Microbiol ; 11: 684525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249777

RESUMO

Invasive aspergillosis is one of the major causes of morbidity and mortality among invasive fungal infections. The search for new antifungal drugs becomes imperative when existing drugs are not able to efficiently treat these infections. Ebselen, is an organoselenium compound, already successfully approved in clinical trials as a repositioned drug for the treatment of bipolar disorder and prevention of noise-induced hearing loss. In this study, we aimed to reposition ebselen for the treatment of invasive aspergillosis by showing ebselen effectiveness in a murine model. For this, BALB/c mice were immunosuppressed and infected systemically with Aspergillus fumigatus. Animals were divided and treated with ebselen, voriconazole, or drug-free control, for four days. The kidneys were used for CFU count and, histopathological and cytokine analysis. Ebselen was able to significantly reduce the fungal burden in the kidneys of infected mice with efficacy comparable with voriconazole treatment as both had reductions to the same extent. The absence of hyphae and intact kidney tissue structure observed in the histopathological sections analyzed from treated groups corroborate with the downregulation of IL-6 and TNF. In summary, this study brings for the first time in vivo evidence of ebselen efficacy against invasive aspergillosis. Despite these promising results, more animal studies are warranted to evaluate the potential role of ebselen as an alternative option for the management of invasive aspergillosis in humans.


Assuntos
Aspergilose , Infecções Fúngicas Invasivas , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Aspergilose/tratamento farmacológico , Azóis , Modelos Animais de Doenças , Infecções Fúngicas Invasivas/tratamento farmacológico , Isoindóis , Camundongos , Camundongos Endogâmicos BALB C , Compostos Organosselênicos
19.
Pathogens ; 10(3)2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33800117

RESUMO

Candida albicans is the most common species isolated from nosocomial bloodstream infections. Due to limited therapeutic arsenal and increase of drug resistance, there is an urgent need for new antifungals. Therefore, the antifungal activity against C. albicans and in vivo toxicity of a 1,3,4-oxadiazole compound (LMM6) was evaluated. This compound was selected by in silico approach based on chemical similarity. LMM6 was highly effective against several clinical C. albicans isolates, with minimum inhibitory concentration values ranging from 8 to 32 µg/mL. This compound also showed synergic effect with amphotericin B and caspofungin. In addition, quantitative assay showed that LMM6 exhibited a fungicidal profile and a promising anti-biofilm activity, pointing to its therapeutic potential. The evaluation of acute toxicity indicated that LMM6 is safe for preclinical trials. No mortality and no alterations in the investigated parameters were observed. In addition, no substantial alteration was found in Hippocratic screening, biochemical or hematological analyzes. LMM6 (5 mg/kg twice a day) was able to reduce both spleen and kidneys fungal burden and further, promoted the suppresses of inflammatory cytokines, resulting in infection control. These preclinical findings support future application of LMM6 as potential antifungal in the treatment of invasive candidiasis.

20.
Molecules ; 26(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466379

RESUMO

We evaluated a hydroalcoholic extract of Sapindus saponaria L. pericarps (ETHOSS), as a candidate to a topical antifungal medicine for onychomycosis. ETHOSS was produced by extracting the crushed fruits in ethanol. The saponin contents were identified and characterized by electrospray ionization mass spectrometry. We measured the in vitro antifungal activity against three dermatophyte fungi, isolated from onychomycosis: Trichophyton rubrum, T. mentagrophytes, and T. interdigitale, using broth microdilution tests. The minimum fungicide concentration of ETHOSS ranged from 195.31 to 781.25 µg/mL. The cytotoxicity of the crude extract was tested on the HeLa cell line, and its ability to permeate into healthy human nails by photoacoustic spectroscopy and Fourier transformation infrared spectrometer (FTIR) spectroscopy by attenuated total reflection. Besides its strong antifungal activity, ETHOSS showed low cytotoxicity in human cells. It was able to permeate and reach the full thickness of the nail in one hour, without the aid of facilitating vehicles, and remained there for at least 24 h. These results suggest that ETHOSS has great potential for treating onychomycosis.


Assuntos
Álcoois/química , Antifúngicos/farmacologia , Unhas/efeitos dos fármacos , Extratos Vegetais/farmacologia , Saponaria/química , Saponinas/farmacologia , Adulto , Feminino , Humanos , Unhas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...